Pearson Edexcel

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCSE
In Mathematics (1MA1)
Higher (Non-Calculator) Paper 1H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P66305A
Publications Code 1MA1_1H_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General marking guidance

These notes offer general guidance, but the specific notes for examiners appertaining to individual questions take precedence.
1
All candidates must receive the same treatment. Examiners must mark the last candidate in exactly the same way as they mark the first. Where some judgement is required, mark schemes will provide the principles by which marks will be awarded; exemplification/indicative content will not be exhaustive. When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the response should be sent to review.

All the marks on the mark scheme are designed to be awarded; mark schemes should be applied positively. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme. If there is a wrong answer (or no answer) indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

Questions where working is not required: In general, the correct answer should be given full marks.
Questions that specifically require working: In general, candidates who do not show working on this type of question will get no marks - full details will be given in the mark scheme for each individual question.

3 Crossed out work
This should be marked unless the candidate has replaced it with
an alternative response.
4 Choice of method
If there is a choice of methods shown, mark the method that leads to the answer given on the answer line.
If no answer appears on the answer line, mark both methods then award the lower number of marks.
5 Incorrect method
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review for your Team Leader to check.

6 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working as you can check the answer, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

7 I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question or its context. (eg an incorrectly cancelled fraction when the unsimplified fraction would gain full marks).
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect (eg. incorrect algebraic simplification).

8 Probability
Probability answers must be given as a fraction, percentage or decimal. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
9 Linear equations
Unless indicated otherwise in the mark scheme, full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously identified in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

10 Range of answers
Unless otherwise stated, when an answer is given as a range (eg $3.5-4.2$) then this is inclusive of the end points (eg $3.5,4.2$) and all numbers within the range

11 Number in brackets after a calculation

Where there is a number in brackets after a calculation eg $2 \times 6(=12)$ then the mark can be awarded either for the correct method, implied by the calculation or for the correct answer to the calculation.

12 Use of inverted commas
Some numbers in the mark scheme will appear inside inverted commas eg " 12 " $\times 50$; the number in inverted commas cannot be any number - it must come from a correct method or process but the candidate may make an arithmetic error in their working.

13 Word in square brackets
Where a word is used in square brackets eg [area] $\times 1.5$: the value used for [area] does not have to come from a correct method or process but is the value that the candidate believes is the area. If there are any constraints on the value that can be used, details will be given in the mark scheme.

Misread
If a candidate misreads a number from the question. eg uses 252 instead of 255; method or process marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.

Guidance on the use of abbreviations within this mark scheme

M method mark awarded for a correct method or partial method
P process mark awarded for a correct process as part of a problem solving question
A accuracy mark (awarded after a correct method or process; if no method or process is seen then full marks for the question are implied but see individual mark schemes for more details)

C communication mark awarded for a fully correct statement(s) with no contradiction or ambiguity

B unconditional accuracy mark (no method needed)
oe or equivalent
cao correct answer only
ft follow through (when appropriate as per mark scheme)
sc special case
dep dependent (on a previous mark)
indep independent
awrt answer which rounds to
isw ignore subsequent working

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
1	$x<5$	M1 A1	for adding 27 to both sides or dividing throughout by 7 (in an inequality or an equation) as a first step or showing 5 as the critical value cao	Can be written as $x=5$
2	$2 \times 2 \times 31$	M1 A1	for a complete method to find prime factors; could be shown on a complete factor tree with no more than one error or by division by prime factors with no more than one error or for $2,2,31$, (1) for $2 \times 2 \times 31$ oe	Condone the inclusion of 1 for this mark Accept $2^{2} \times 31$

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
3	30	P1	$\text { for } 160 \div(3+7)(=16) \text { or } \frac{3}{3+7}\left(=\frac{3}{10}\right)$	Award no marks for a correct answer with no supportive working
		P1	$\text { for " } 16 \text { " } \times 3(=48) \text { or " } \frac{3}{10} " \times 160(=48)$	
		P1	for a correct step using 48 eg " 48 " $\div 8(=6)$ or " 48 " $\times 25 \div 100(=12)$ or (indep) for combining $\frac{1}{8}$ and 25%, eg $\frac{1}{8}+\frac{1}{4}\left(=\frac{3}{8}\right)$ or " $0.125 "+" 0.25 "(=0.375)$ or " 12.5 " $(\%)+25(\%)(=37.5(\%))$	
		P1	for a complete process to find the number of petrol cars, $\begin{aligned} & \text { eg " } 48 "-" 6 "-" 12 " \text { oe or }\left(1-" \frac{3}{8} "\right) \times " 48 " \text { oe } \\ & \text { or " } \frac{3}{10} " \times\left(1-" \frac{3}{8} "\right) \times 160 \text { oe } \end{aligned}$	
		A1	cao SC B2 for an answer of 100 if P0 scored	
$\begin{array}{ll}4 & \text { (a) } \\ & \text { (b) } \\ & \text { (c) }\end{array}$	0.00163	B1	cao	
	4.38×10^{5}	B1	cao	
	2.4×10^{-1}	M1	for $4 \times 6 \times 10^{3-5}$ or 0.24 oe eg 24×10^{-2} or 2.4×10^{n} where $n \neq-1$	
		A1		

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
$10 \quad$ (a)	$\begin{gathered} 10,25,50,80, \\ 85,100 \end{gathered}$	B1	cao	
	Graph drawn	M1	for 5 or 6 of their points plotted correctly from a cf table with no more than one error	If histograms drawn, plots must be identified.
		A1	for a fully correct graph SC B1 for 5 or 6 cf values plotted at correct heights not at end but consistently within each interval and joined provided no gradient is negative	Accept a smooth curve or line segments. Ignore to the left of the first point and right of the last point.
	35 to 39	B1	for answer in the range 35 to $39 \mathrm{or} \mathrm{ft} \mathrm{their} \mathrm{graph} \mathrm{(if} \mathrm{possible)}$	
	85 to 93	M1	for finding the difference between readings taken from the profit axis at points from a cf of 25 and a cf of 75 ft their graph (if possible)	
		A1	for answer in the range 85 to 93 or ft their graph (if possible)	If answer is in the range award the marks unless from obvious incorrect working
11	8	P1	for a start to the process, eg $\frac{9}{9+4+x}$ or $\left(\frac{3}{7}=\right) \frac{9}{21}$	
			or states that the total number of sweets is 21	
		P1	for forming a correct equation without fractions,	
			eg $9 \times 7=3(9+4+x)$ or $21=9+4+x$	
			OR for $21-9-4$ oe or $1-\frac{9}{21}-\frac{4}{21}\left(=\frac{8}{21}\right)$	
		A1		

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
13	Relationship shown	M1 M1 C1	for use of Pythagoras' theorem, eg $\mathrm{d}_{\mathrm{A}}{ }^{2}=\mathrm{d}_{\mathrm{B}}{ }^{2}+\mathrm{d}_{\mathrm{C}}{ }^{2}$ or $a^{2}=b^{2}+c^{2}$ or $(2 x)^{2}=(2 y)^{2}+(2 z)^{2}$ or $a=\sqrt{b^{2}+c^{2}}$ or uses a 3, 4, 5 triangle for forming correct expressions for the areas of at least 2 of the 3 semicircles, eg at least two of $\frac{1}{2} \pi\left(\frac{a}{2}\right)^{2}, \frac{1}{2} \pi\left(\frac{b}{2}\right)^{2}, \frac{1}{2} \pi\left(\frac{c}{2}\right)^{2}$ or at least two of $\frac{1}{2} \pi x^{2}, \frac{1}{2} \pi y^{2}, \frac{1}{2} \pi z^{2}$ or at least two of $\frac{1}{2} \pi\left(\frac{5}{2}\right)^{2}, \frac{1}{2} \pi\left(\frac{3}{2}\right)^{2}, \frac{1}{2} \pi\left(\frac{4}{2}\right)^{2}$ for a fully correct and convincing chain of reasoning, eg showing that eg $\frac{1}{2} \pi\left(\frac{a}{2}\right)^{2}=\frac{1}{2} \pi\left(\frac{b}{2}\right)^{2}+\frac{1}{2} \pi\left(\frac{c}{2}\right)^{2}$ can be reduced to $a^{2}=b^{2}+c^{2}$ or that $(2 x)^{2}=(2 y)^{2}+(2 z)^{2}$ is the same as $\frac{1}{2} \pi x^{2}=\frac{1}{2} \pi y^{2}+\frac{1}{2} \pi z^{2}$	May be seen at any stage Where $\mathrm{d}_{\mathrm{A}}, a, 2 x$, etc are their diameters Could be any Pythagorean triple Where a, b, c are their diameters Where $2 x, 2 y, 2 z$ are their diameters Where 3, 4, 5 are their diameters
a) (b)		M1 M1 A1 C1	for drawing a tangent at $t=2$ for a complete method to find the gradient eg tangent at $t=2$ and " 2.7 " $\div 3$ " for answer in the range 0.7 to 1.1 eg distance (travelled)	Use of change in y over change in x Working may be seen on the diagram Accept answers in the form $\frac{a}{b}$ where a and b are integers If units are given they must be correct

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Paper: 1MA1/1H} \\
\hline Question \& Answer \& Mark \& Mark scheme \& Additional guidance \\
\hline \multirow[t]{2}{*}{15 (a)} \& \multirow[t]{2}{*}{\(\overrightarrow{A C}=5 \overrightarrow{A B}\) and reason
\[
5: 2
\]} \& M1 \& for \(\overrightarrow{A C}=5(3 \mathbf{a}+4 \mathbf{b})\) or \(\overrightarrow{B C}=4(3 \mathbf{a}+4 \mathbf{b})\) or indicates that \(15 \mathbf{a}+20 \mathbf{b}=5 \times(3 \mathbf{a}+4 \mathbf{b})\) \& \\
\hline \& \& C1 \& for \(\overrightarrow{A C}=5 \overrightarrow{A B}\) or \(\overrightarrow{A C}=5(3 \mathbf{a}+4 \mathbf{b})\) or \(15 \mathbf{a}+20 \mathbf{b}=5(3 \mathbf{a}+4 \mathbf{b})\) and \(\mathbf{a}\) correct reason, eg \(A C\) is a multiple of \(A B\) / multiples of each other / \(A B\) is a factor of \(A C\) or they have the same gradient / are parallel / go in the same direction or they have a point in common / both start at \(A\) or \(A C\) is an enlargement of \(A B\) \& Do not award this mark if any incorrect working seen Could use \(A B\) and \(B C\) or \(A C\) and \(B C\) \\
\hline (b) \& \(5: 2\) \& P1 \& \begin{tabular}{l}
for \((\overrightarrow{D F}=) 3 \mathbf{e}+6 \mathbf{f}+(-10.5 \mathbf{e}-21 \mathbf{f}) \quad(=-7.5 \mathbf{e}-15 \mathbf{f})\) \\
or for a multiplicative relationship for \(\overrightarrow{D E}\) and \(\overrightarrow{E F}\) eg \(\overrightarrow{E F}=-3.5 \overrightarrow{D E}\) or for \((D E: E F=) 1:-3.5\) oe
\end{tabular} \& \\
\hline \& \& P1

A1 \& for a multiplicative relationship for $\overrightarrow{D F}$ and $\overrightarrow{D E}$ eg $\overrightarrow{D F}=-2.5 \overrightarrow{D E}$ or for $(D F: D E=)-5: 2$ oe eg $-2.5: 1$ or $-7.5: 3$ or for answer of 2:5 oe oe eg $2.5: 1$ \&

\hline
\end{tabular}

Paper: 1MA1/1H				
Question	Answer	ark	Mark scheme	Additional guidance
16	0.78	P1	for using 0.75 or 0.25 in a relevant product, eg $0.75 \times x$ or $0.25 \times y$	Allow different letters Could work with fractions
		P1	for using two products to form an equation, eg $0.75 x+0.25 y=0.36$	
		P1	for a correct equation in one variable, $\text { eg } 0.75(1-p)+0.25 p=0.36 \text { or } 0.75 f+0.25(1-f)=0.36$	Could set up an equation for $\text { pass } \times \text { pass }+ \text { fail } \times \text { fail }=0.64$
		A1	oe	Accept 78% or any equivalent fraction, eg $\frac{39}{50}, \frac{156}{200}$
17	$y=\frac{40}{\sqrt{x^{3}}}$	P1	for setting up an equation with a constant term, eg $y=k \sqrt{t}$ or $t=\frac{K}{x^{3}}$	Condone the use of ' α ' instead of ' $=$ ' for the first two P marks Equation can be implied by correct substitution
		P1	for a process to substitute values in one equation, eg $15=k \sqrt{9}$ or $k=5$ or $8=\frac{K}{2^{3}}$ or $K=64$	
		P1	(dep P 2) for combining the two equations ft their values of k and K, eg $y=5 \sqrt{\frac{64}{x^{3}}}$ OR for $y=5 \sqrt{t}$ and $t=\frac{64}{x^{3}}$	
		A1	oe	Formula must include 40 Accept other forms for the power of x but must be a single term in x

18	16	M1	for working with square root or with reciprocal in $\left(5 \frac{4}{9}\right)^{-\frac{1}{2}}$ eg $\left(\frac{9}{49}\right)^{\frac{1}{2}}$ or $\frac{1}{\sqrt{\frac{49}{9}}}$ or $\frac{1}{\left(\frac{49}{9}\right)^{\frac{1}{2}}}$ or $\left(\frac{7}{3}\right)^{-1}$ or $\frac{3}{7}$	
		M1	for a full method to simplify the numerator eg $\frac{3}{7} \times \frac{14}{3}(=2)$	
		M1	for showing $\div 2^{-3}$ as $\times 8$, eg $\frac{3}{7} \times \frac{14}{3} \times 8$ or for $2^{1} \div 2^{-3}\left(=2^{4}\right)$ or for correctly reducing the expression to a single calculation, eg $\frac{336}{21}$ or $\frac{112}{7}$ or $2 \div \frac{1}{8}$	May be seen at any time during the calculation
		A1	cao	Award 0 marks for a correct answer with no supportive working

Paper: 1MA1/1H				
Question	Answer	Mark	Mark scheme	Additional guidance
20	$7 x+5 y-82=0$	P1	for process to work out the gradient of the line from the centre of the circle to the point $(6,8)$ eg $\frac{8-3}{6--1}\left(=\frac{5}{7}\right)$	
		P1	(dep P1) for using $m n=-1$ $\text { eg }-1 \div " \frac{5}{7} "\left(=-\frac{7}{5}\right)$	
		P1	for substituting $(6,8)$ into $y="-\frac{7}{5} " x+c$ or for $(y-8)="-\frac{7}{5} "(x-6)$ or for $y=-\frac{7}{5} x+\frac{82}{5}$ oe	
		A1	$7 x+5 y-82=0 \text { oe }$ SC B2 for answer of $5 x+7 y-86=0$ oe in any form	Must be in form $a x+b y+c=0$ with integer coefficients, eg $82-7 x-5 y=0$

area of segment $=$ area of sector centre $A-$ area of equilateral triangle
Total shaded area $=$ area of circle $-4 \times$ area of sector $-4 \times$ area of segment or area of circle $-4 \times$ area of triangle $-8 \times$ area of segment

area of segment $=$ area of sector centre A - area of isosceles triangle Total shaded area $=$ area of circle $-4 \times$ area of segment

area of segment $=$ area of sector centre $B-$ area of equilateral triangle
Total shaded area $=2 \times$ (area of sector $-2 \times$ area of segment $)$
or $2 \times$ (area of triangle - area of segment)

Modifications to the mark scheme for Modified Large Print (MLP) papers: 1MA1 1H

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme. Notes apply to both MLP papers and Braille papers unless otherwise stated.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: ± 5 응
Measurements of length: $\pm 5 \mathrm{~mm}$

PAPER: 1MA1_1H			
Question		Modification	Mark scheme notes
5		Wording added 'Look at the diagram for Question 5 in the Diagram Booklet. It shows a regular hexagon and a regular pentagon which share a common side.'. Diagram enlarged. The angle moved outside of the angle arc and the angle arc made smaller. For Braille the diagram has hexagon ABCDEF and pentagon GHICB with x outside the angle arc. Wording now "The diagram is a regular hexagon, ABCDEF, and a regular pentagon, GHICB, joined at the common side, BC." "In the diagram, angle DCI is marked x."	Standard mark scheme
6	(a)	Wording added 'Complete the table below...'. The table turned vertical. Wording added 'There are four spaces to fill.' For Braille Add (i), (ii), (iii) \& (iv) in the blank spaces and "Ans: (i) \qquad (ii) \qquad (iii) \qquad (iv) \qquad ""	Standard mark scheme
6	(b)	Wording added 'Look at the diagram for Question 6(b) in the Diagram Booklet. It shows a grid.' Diagram enlarged. Open headed arrows. Small squares removed. The axes labels moved to the top of the vertical axis and to the right of the horizontal axis.	Standard mark scheme
7		Wording added 'Look at the diagram for Question 7 in the Diagram Booklet. It shows cube A and cube B.' Wording added 'Cube A has sides of length 3 cm '; 'Cube B has sides of length 4 cm .' Diagram enlarged. The diagrams relabelled as 'cube A' and 'cube B'. Braille: have a model with the words "The models represent two cubes, A and B."	Standard mark scheme
8		Wording added 'Look at the table for Question 8 in the Diagram Booklet. It shows...'. The frequency column widened.	Standard mark scheme

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{PAPER: 1MA1_1H} \\
\hline \multicolumn{2}{|l|}{Question} \& Modification \& Mark scheme notes \\
\hline 9 \& \& \begin{tabular}{l}
Wording added 'Look at the diagram for Question 9 in the Diagram Booklet. You may be provided with a model.' \\
Wording added 'A cube is placed on top of a cuboid, to form a solid, as shown by the diagram and the model.' \\
Diagram enlarged. \\
The dashed lines made longer and thicker.
\end{tabular} \& Standard mark scheme \\
\hline 10

10 \& \begin{tabular}{l}
(a)

(b)

(c)

(d)

 \&

Wording added 'Look at the table for Question 10 in the Diagram Booklet. It shows...'.

The values changed so that the answers can be read on a grid line.

25 changed to 30.30 changed to 15 . 5 changed to 10.15 changed to 20 .

Wording added 'Complete the cumulative frequency table below.' 'There are six spaces to fill.'

Wording added 'Look at the diagram for Question 10(b) in the Diagram Booklet. It shows a grid.

Diagram enlarged. Small squares removed. Open headed arrows. Right axis labelled.

The axes labels moved to the top of the vertical axis and to the left of the horizontal axis. Intermediates added at intervals of 5 on the y axis. The grid cut at 300 on the x axis.

 \&

B1 for $10,25,55,70,80,100$

(b) Standard mark scheme

(c) B1 for answer of 40 or ft their graph (if possible)

(d) M1 for finding the difference between readings taken from the profit axis at points from a cf of 25 and a cf of 75 ft their graph (if possible) A1 for answer in the range 120 to 130 or ft their graph (if possible)
\end{tabular}

\hline 11 \& \& Wording added 'Look at the information for Question 11 in the Diagram Booklet. \& Standard mark scheme

\hline
\end{tabular}

